$V = 5296 (2) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.83 \text{ mm}^{-1}$

 $0.34 \times 0.32 \times 0.14 \text{ mm}$

9484 measured reflections

2327 independent reflections

1837 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Z = 6

T = 298 K

 $R_{\rm int} = 0.044$

132 parameters

 $\Delta \rho_{\text{max}} = 0.26 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(propionitrile- κN)[1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane- $\kappa^3 N^1, N^4, N^7$]copper(II) bis(perchlorate) dihydrate

Zhong Zhang,* Jianqi Lu and Difeng Wu

College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China Correspondence e-mail: zhangzhong@mailbox.gxnu.edu.cn

Received 16 December 2009; accepted 26 January 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.144; data-to-parameter ratio = 17.6.

In the title compound, $[Cu(C_3H_5N)_3(C_{12}H_{18}N_6)](ClO_4)_2$. 2H₂O, the Cu^{II} atom lies on a threefold rotation axis and is coordinated in a distorted N₆ octahedral environment by three tertiary amines from the tridentate chelating azamacrocyclic ligand and three propionitrile molecules. Intermolecular nonclassical C-H···N hydrogen bonding interlinks the $[Cu(C_3H_5N)_3(C_{12}H_{18}N_6)]^{2+}$ cations into a two-dimensional supramolecular sheet extending along the *ab* plane. The crystal packing also exhibits weak C-H···O interactions.

Related literature

For transition metal complexes with cyanoalkylated triazamacrocycles, see: Tei *et al.* (2003). For transition metal complexes with cyanoalkylated tetraazamacrocycles, see: Aneetha *et al.* (1999); Freeman *et al.* (1984); Kang *et al.* (2002*a*); Kong *et al.* (2000). For the reactivity of the pendant nitrile group attached to the azamacrocycle, see: Freeman *et al.* (1984); Kang *et al.* (2002*b*, 2005, 2008); Siegfried *et al.* (2005); Tei *et al.* (2003); Zhang *et al.* (2006). For the synthesis of the triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7triazacyclononane, see: Tei *et al.* (1998).

Experimental

Crystal data
$[Cu(C_3H_5N)_3(C_{12}H_{18}N_6)](ClO_4)_2$.
2H ₂ O
$M_r = 710.05$
Trigonal, $R\overline{3}$
a = 9.962 (2) Å
c = 61.623 (18) Å

Data collection

```
Bruker SMART APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
T<sub>min</sub> = 0.760, T<sub>max</sub> = 0.887
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.144$ S = 0.992327 reflections

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\mathrm{H}\cdots A}$

Symmetry codes: (i) -y + 2, x - y + 1, z; (ii) x - 1, y - 1, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2185).

References

- Aneetha, H., Lai, Y. H., Lin, S. C., Panneerselvam, K., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2885–2892.
- Bruker (1998). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.
- Bruker (2002). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
- Freeman, G. M., Barefield, E. K. & Derveer, D. G. V. (1984). *Inorg. Chem.* 23, 3092–3103.
- Kang, S.-G., Kim, N. & Jeong, J. H. (2008). Inorg. Chim. Acta, 361, 349–354.
- Kang, S.-G., Kweon, J. K. & Jeong, J. H. (2005). Bull. Korean Chem. Soc. 26, 1861–1864.
- Kang, S.-G., Ryu, K. & Kim, J. (2002a). Bull. Korean Chem. Soc. 23, 81-85.

- Kang, S.-G., Song, J. & Jeong, J. H. (2002b). Bull. Korean Chem. Soc. 23, 824–828.
- Kong, D. Y., Meng, L. H., Ding, J., Xie, Y. Y. & Huang, X. Y. (2000). Polyhedron, 19, 217–223.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siegfried, L., Comparone, A., Neuburger, M. & Kaden, T. A. (2005). Dalton Trans. pp. 30–36.
- Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 304–310.
- Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.
- Zhang, Z., He, Y., Zhao, Q., Xu, W., Li, Y. Z. & Wang, Z. L. (2006). Inorg. Chem. Commun. 9, 269–272.

supplementary materials

Acta Cryst. (2010). E66, m235-m236 [doi:10.1107/S1600536810003211]

Tris(propionitrile- κN)[1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane- $\kappa^3 N^1$, N^4 , N^7]copper(II) bis(perchlorate) dihydrate

Z. Zhang, J. Lu and D. Wu

Comment

The coordination chemistry of the azamacrocycles with nitrile pendant arms has been studied extensively. Usually, these azamacrocycle derivatives only chelate the metal through tertiary amines and the pendant nitrile groups do not involve in the coordination (Aneetha *et al.*, 1999; Freeman *et al.*, 1984; Kang *et al.*, 2002*a*; Kong *et al.*, 2000; Tei *et al.*, 2003). However, the reactivity of the nitrile group in these complexes towards nucleophilic reagents, such as water, alcohols and amines, provides a convenient route to the synthesis of a variety of *N*–functionalized azamacrocycles (Freeman *et al.*, 1984; Kang *et al.*, 2002*b*, 2005, 2008; Siegfried *et al.*, 2005; Tei *et al.*, 2003; Zhang *et al.*, 2006). In order to obtain further knowledge about the reactivity of the nitrile groups attached to the triazamacrocycle, a title compound of Cu^{II} with 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane has been prepared and structurally characterized.

As shown in Fig. 1, the distorted octahedral Cu^{II} center in the title compound is located on a threefold rotation axis and is ligated by three N donors of the tridentate azamacrocycle backbone and other three from coordinated propionitrile molecules. The Cu—N(macrocycle) length (2.089 (3)Å) is slightly longer than that of the Cu—N(propionitrile) (2.030 (3)Å), while the bond angles subtended by *cis*–pairs of donor atoms at Cu^{II} range from 84.13 (13)° to 96.12 (11)°. In the *ab*–plane, each $[Cu(C_{12}H_{18}N_6)(C_3H_5N)_3]^{2+}$ cation are linked with six neighbouring cations by means of C—H…N hydrogen bonding (Table 1) to form an extended two–dimensional supramolecular network, as depicted in Fig. 2. Perchlorate counter–anions are embedded in the two–dimensional supramolecular cationic layer *via* weak interactions.

Experimental

The triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane was prepared according to a published method (Tei *et al.*, 1998).

To the propionitrile solution (20 ml) of the triazamacrocyclic ligand (49 mg, 0.2 mmol), $Cu(ClO_4)_2$ ·6H₂O (74 mg, 0.2 mmol) was added. The resulting mixture was stirred under reflux for 4 h and then cooled to ambient temperature. Blue single crystals of title compound suitable for X–ray diffraction analysis were obtained by slow diffusion of diethyl ether into the complex solution. (yield 51 mg, 72%). Elemental analysis found: C 35.52; H 5.39; N 17.69%; calculated for C₂₁H₃₇Cl₂CuN₉O₁₀: C 35.31; H 5.28; N 17.75%.

Refinement

All H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.96-0.97Å and O—H = 0.85Å, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ and } O)$ or $1.5U_{eq}(\text{methyl } C)$. OW2 lies on a threefold rotation axis, so its hydrogen

atoms are disordered with site occupancy factor of 0.33. OW1 and OW3 are disordered on special positions with threefold roto–inversion symmetry and each of them has 0.17 occupancy in the asymmetric unit.

Figures

Fig. 1. An *ORTEP* plot for the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms of the macrocyclic ligand are omitted for clarity. The disorder in the solvent water molecules are not shown. Symmetry codes: (i) - x+y+1, -x+1, z; (ii) -y+2, x-y+1, z; (iii) -x+y+1, -x+2, z; (iv) -y+1, x-y+1, z; (v) -x+y, -x+1, z; (vi) -y+1, x-y, z.

Fig. 2. A view of the packing diagram of the title compound, showing the two-dimensional hydrogen-bonding supramolecular sheet. H atoms not involved in hydrogen bonds are omitted for clarity.

Tris(propionitrile-κN)[1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane-κ	N^{1}	,N ⁴	,N ⁷]copper(II)	bis(perch	lorate)
dihydrate						

Crystal data

$[Cu(C_3H_5N)_3(C_{12}H_{18}N_6)](ClO_4)_2 \cdot 2H_2O$	$D_{\rm x} = 1.336 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 710.05$	Mo K α radiation, $\lambda = 0.71073$ Å
Trigonal, <i>R</i> 3	Cell parameters from 1799 reflections
Hall symbol: -R 3	$\theta = 2.4 - 20.9^{\circ}$
a = 9.962 (2) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 61.623 (18) Å	T = 298 K
$V = 5296 (2) \text{ Å}^3$	Plate, blue
Z=6	$0.34 \times 0.32 \times 0.14 \text{ mm}$
F(000) = 2214	
Data collection	
D. 1. OMADE ADEVILOOD	

diffractometer	2327 independent reflections
Radiation source: fine-focus sealed tube	1837 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998)	$h = -12 \rightarrow 12$
$T_{\min} = 0.760, \ T_{\max} = 0.887$	$k = -7 \rightarrow 12$
9484 measured reflections	$l = -75 \rightarrow 64$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.144$	H-atom parameters constrained
<i>S</i> = 0.99	$w = 1/[\sigma^2(F_0^2) + (0.0959P)^2 + 1.480P]$ where $P = (F_0^2 + 2F_c^2)/3$
2327 reflections	$(\Delta/\sigma)_{max} < 0.001$
132 parameters	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	Fractional atomic coordinates and	l isotropic or e	equivalent isotro	pic displa	cement parameter	rs (Ų	')
--	-----------------------------------	------------------	-------------------	------------	------------------	-------	----

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.8592 (4)	0.4740 (4)	0.02573 (6)	0.0412 (8)	
H1A	0.9682	0.5407	0.0224	0.049*	
H1B	0.8078	0.4188	0.0126	0.049*	
C2	0.7901 (4)	0.5749 (4)	0.03281 (5)	0.0336 (7)	
H2A	0.8615	0.6547	0.0427	0.040*	
H2B	0.7778	0.6258	0.0202	0.040*	
C3	0.5888 (4)	0.5827 (4)	0.05172 (5)	0.0379 (8)	
H3A	0.6568	0.6427	0.0635	0.045*	
H3B	0.4873	0.5155	0.0580	0.045*	
C4	0.5751 (4)	0.6906 (4)	0.03705 (5)	0.0360 (7)	
C5	0.4092 (4)	0.2743 (4)	0.09939 (5)	0.0394 (8)	
C6	0.3004 (4)	0.2578 (4)	0.11629 (5)	0.0389 (8)	
H6A	0.1959	0.2111	0.1105	0.047*	
H6B	0.3281	0.3578	0.1225	0.047*	
C7	0.3123 (5)	0.1525 (4)	0.13332 (5)	0.0404 (8)	
H7A	0.3651	0.1029	0.1272	0.061*	
H7B	0.2101	0.0751	0.1378	0.061*	
H7C	0.3691	0.2133	0.1456	0.061*	

supplementary materials

Cl1	1.0000	1.0000	0.07171 (2)	0.0373 (3)	
C12	0.3333	0.6667	0.09665 (2)	0.0383 (3)	
Cu1	0.6667	0.3333	0.063982 (10)	0.0316 (2)	
N1	0.6443 (3)	0.4868 (3)	0.04321 (4)	0.0335 (6)	
N2	0.5838 (3)	0.7880 (3)	0.02473 (4)	0.0385 (7)	
N3	0.4964 (4)	0.3039 (3)	0.08486 (5)	0.0423 (7)	
01	0.3333	0.6667	0.1667	0.0247 (10)	
H1C	0.3300	0.6081	0.1769	0.037*	0.16667
H1D	0.3867	0.7608	0.1706	0.037*	0.16667
O2	0.6667	0.3333	0.14060 (6)	0.0353 (8)	
H2C	0.6152	0.3741	0.1454	0.042*	0.33333
H2D	0.6160	0.2696	0.1305	0.042*	0.33333
O3	1.0000	1.0000	0.0000	0.0544 (16)	
H3D	1.0241	1.0481	0.0120	0.065*	0.16667
H3C	0.9020	0.9506	-0.0014	0.082*	0.16667
011	0.8501 (3)	0.9383 (3)	0.06411 (4)	0.0473 (7)	
012	1.0000	1.0000	0.09409 (6)	0.0442 (10)	
O21	0.3333	0.6667	0.07487 (7)	0.0413 (10)	
O22	0.3579 (3)	0.8074 (3)	0.10312 (4)	0.0379 (5)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0410 (19)	0.0400 (19)	0.0380 (17)	0.0170 (16)	0.0013 (14)	-0.0008 (14)
C2	0.0297 (15)	0.0339 (16)	0.0334 (15)	0.0131 (13)	0.0009 (12)	-0.0114 (13)
C3	0.0303 (16)	0.0250 (15)	0.0417 (17)	0.0014 (13)	0.0066 (13)	0.0010 (13)
C4	0.0364 (17)	0.0447 (18)	0.0314 (15)	0.0238 (15)	0.0036 (13)	-0.0041 (14)
C5	0.0386 (19)	0.0444 (19)	0.0345 (16)	0.0203 (16)	-0.0006 (14)	0.0139 (14)
C6	0.0439 (19)	0.0317 (17)	0.0335 (16)	0.0132 (15)	0.0138 (14)	0.0150 (13)
C7	0.056 (2)	0.0431 (19)	0.0344 (16)	0.0335 (18)	0.0156 (15)	0.0193 (15)
Cl1	0.0360 (5)	0.0360 (5)	0.0400 (7)	0.0180 (2)	0.000	0.000
Cl2	0.0363 (5)	0.0363 (5)	0.0421 (7)	0.0182 (2)	0.000	0.000
Cu1	0.0322 (3)	0.0322 (3)	0.0304 (4)	0.01610 (14)	0.000	0.000
N1	0.0323 (14)	0.0296 (13)	0.0363 (14)	0.0138 (11)	0.0006 (11)	0.0048 (10)
N2	0.0368 (15)	0.0411 (16)	0.0304 (13)	0.0142 (13)	0.0070 (11)	0.0034 (12)
N3	0.0474 (17)	0.0317 (15)	0.0431 (15)	0.0163 (13)	0.0109 (14)	0.0150 (12)
01	0.0253 (15)	0.0253 (15)	0.023 (2)	0.0126 (7)	0.000	0.000
02	0.0318 (12)	0.0318 (12)	0.042 (2)	0.0159 (6)	0.000	0.000
03	0.054 (2)	0.054 (2)	0.054 (4)	0.0272 (12)	0.000	0.000
011	0.0335 (13)	0.0445 (14)	0.0399 (13)	0.0015 (11)	0.0118 (10)	-0.0034 (11)
012	0.0503 (16)	0.0503 (16)	0.032 (2)	0.0252 (8)	0.000	0.000
O21	0.0424 (15)	0.0424 (15)	0.039 (2)	0.0212 (7)	0.000	0.000
022	0.0341 (12)	0.0427 (13)	0.0341 (11)	0.0172 (11)	-0.0008(9)	0.0054 (10)

Geometric parameters (Å, °)

C1—C2	1.538 (5)	Cl1—O11 ⁱⁱ	1.382 (3)
C1—N1 ⁱ	1.543 (4)	Cl1—O11	1.382 (3)

C1—H1A	0.9700	Cl1—O11 ⁱⁱⁱ	1.382 (3)
C1—H1B	0.9700	Cl2—O21	1.342 (4)
C2—N1	1.420 (4)	Cl2—O22	1.357 (3)
C2—H2A	0.9700	Cl2—O22 ^{iv}	1.357 (3)
C2—H2B	0.9700	Cl2—O22 ^v	1.357 (3)
C3—N1	1.422 (5)	Cu1—N3 ^{vi}	2.030 (3)
C3—C4	1.462 (5)	Cu1—N3 ⁱ	2.030 (3)
С3—НЗА	0.9700	Cu1—N3	2.030 (3)
С3—НЗВ	0.9700	Cu1—N1 ^{vi}	2.089 (3)
C4—N2	1.200 (5)	Cu1—N1 ⁱ	2.089 (3)
C5—N3	1.178 (5)	Cu1—N1	2.089 (3)
C5—C6	1.452 (5)	N1—C1 ^{vi}	1.543 (4)
C6—C7	1.529 (4)	O1—H1C	0.8500
С6—Н6А	0.9700	O1—H1D	0.8500
C6—H6B	0.9700	O2—H2C	0.8500
С/—Н/А С7. Ц7Р	0.9600	02—H2D	0.8500
С7—Н7В	0.9600	03—H3D	0.8500
Cl1—O12	1.379 (4)	05 1150	0.0500
C2—C1—N1 ⁱ	112.9 (3)	012—Cl1—O11 ⁱⁱⁱ	109.83 (11)
С2—С1—Н1А	109.0	011 ⁱⁱ —Cl1—011 ⁱⁱⁱ	109.11 (11)
N1 ⁱ —C1—H1A	109.0	O11—Cl1—O11 ⁱⁱⁱ	109.11 (11)
C2—C1—H1B	109.0	O21—Cl2—O22	107.08 (11)
N1 ⁱ —C1—H1B	109.0	O21—Cl2—O22 ^{iv}	107.08 (11)
H1A—C1—H1B	107.8	O22—Cl2—O22 ^{iv}	111.75 (10)
N1—C2—C1	112.2 (3)	O21—C12—O22 ^v	107.08 (11)
N1—C2—H2A	109.2	O22—Cl2—O22 ^v	111.75 (10)
C1—C2—H2A	109.2	$O22^{iv}$ —Cl2—O22 ^v	111.75 (10)
N1—C2—H2B	109.2	N3 ^{vi} —Cu1—N3 ⁱ	84.13 (13)
C1—C2—H2B	109.2	N3 ^{vi} —Cu1—N3	84.13 (13)
H2A—C2—H2B	107.9	N3 ⁱ —Cu1—N3	84.13 (13)
N1—C3—C4	118.5 (3)	N3 ^{vi} —Cu1—N1 ^{vi}	96.12 (11)
N1—C3—H3A	107.7	N3 ⁱ —Cu1—N1 ^{vi}	177.46 (11)
С4—С3—НЗА	107.7	N3—Cu1—N1 ^{vi}	93.37 (12)
N1—C3—H3B	107.7	N3 ^{vi} —Cu1—N1 ⁱ	93.37 (12)
С4—С3—Н3В	107.7	N3 ⁱ —Cu1—N1 ⁱ	96.12 (11)
НЗА—СЗ—НЗВ	107.1	N3—Cu1—N1 ⁱ	177.46 (11)
N2	171.7 (4)	N1 ^{vi} —Cu1—N1 ⁱ	86.40 (11)
N3—C5—C6	171.5 (4)	N3 ^{vi} —Cu1—N1	177.46 (11)
C5—C6—C7	105.1 (3)	N3 ⁱ —Cu1—N1	93.37 (12)
С5—С6—Н6А	110.7	N3—Cu1—N1	96.12 (11)
С7—С6—Н6А	110.7	N1 ^{vi} —Cu1—N1	86.40 (11)
С5—С6—Н6В	110.7	N1 ⁱ —Cu1—N1	86.40 (11)

supplementary materials

С7—С6—Н6В	110.7	C2—N1—C3	111.9 (2)
Н6А—С6—Н6В	108.8	C2—N1—C1 ^{vi}	107.5 (2)
С6—С7—Н7А	109.5	C3—N1—C1 ^{vi}	105.8 (3)
С6—С7—Н7В	109.5	C2—N1—Cu1	106.2 (2)
H7A—C7—H7B	109.5	C3—N1—Cu1	119.0 (2)
С6—С7—Н7С	109.5	C1 ^{vi} —N1—Cu1	105.87 (19)
H7A—C7—H7C	109.5	C5—N3—Cu1	167.5 (3)
H7B—C7—H7C	109.5	H1C—O1—H1D	109.4
O12—Cl1—O11 ⁱⁱ	109.83 (11)	H2C—O2—H2D	109.5
012—Cl1—O11	109.83 (11)	H3D—O3—H3C	109.5
011 ⁱⁱ —Cl1—011	109.11 (11)		
N1 ⁱ —C1—C2—N1	-43.3 (4)	N3—Cu1—N1—C3	28.2 (2)
C1—C2—N1—C3	173.9 (3)	N1 ^{vi} —Cu1—N1—C3	121.2 (3)
C1-C2-N1-C1 ^{vi}	-70.5 (4)	N1 ⁱ —Cu1—N1—C3	-152.2 (3)
C1—C2—N1—Cu1	42.5 (3)	N3 ⁱ —Cu1—N1—C1 ^{vi}	-175.0 (2)
C4—C3—N1—C2	54.9 (4)	N3—Cu1—N1—C1 ^{vi}	-90.6 (2)
C4—C3—N1—C1 ^{vi}	-61.8 (3)	N1 ^{vi} —Cu1—N1—C1 ^{vi}	2.44 (19)
C4—C3—N1—Cu1	179.4 (2)	N1 ⁱ —Cu1—N1—C1 ^{vi}	89.05 (15)
N3 ⁱ —Cu1—N1—C2	71.0 (2)	N3 ^{vi} —Cu1—N3—C5	10.1 (14)
N3—Cu1—N1—C2	155.4 (2)	N3 ⁱ —Cu1—N3—C5	-74.6 (13)
N1 ^{vi} —Cu1—N1—C2	-111.58 (15)	N1 ^{vi} —Cu1—N3—C5	105.9 (14)
N1 ⁱ —Cu1—N1—C2	-25.0 (2)	N1—Cu1—N3—C5	-167.3 (14)
N3 ⁱ —Cu1—N1—C3	-56.3 (2)		

Symmetry codes: (i) -*x*+*y*+1, -*x*+1, *z*; (ii) -*y*+2, *x*-*y*+1, *z*; (iii) -*x*+*y*+1, -*x*+2, *z*; (iv) -*y*+1, *x*-*y*+1, *z*; (v) -*x*+*y*, -*x*+1, *z*; (vi) -*y*+1, *x*-*y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1A···N2 ⁱⁱ	0.97	2.49	3.371 (5)	151
С3—Н3А…О11	0.97	2.59	3.269 (4)	127
C6—H6A···O12 ^{vii}	0.97	2.27	3.120 (4)	146
Symmetry codes: (ii) -y+2, x-y+1, z; (vii) x-1, y-	-1, <i>z</i> .			

Fig. 2

